Competition between Homophily and Information Entropy Maximization in Social Networks
نویسندگان
چکیده
In social networks, it is conventionally thought that two individuals with more overlapped friends tend to establish a new friendship, which could be stated as homophily breeding new connections. While the recent hypothesis of maximum information entropy is presented as the possible origin of effective navigation in small-world networks. We find there exists a competition between information entropy maximization and homophily in local structure through both theoretical and experimental analysis. This competition suggests that a newly built relationship between two individuals with more common friends would lead to less information entropy gain for them. We demonstrate that in the evolution of the social network, both of the two assumptions coexist. The rule of maximum information entropy produces weak ties in the network, while the law of homophily makes the network highly clustered locally and the individuals would obtain strong and trust ties. A toy model is also presented to demonstrate the competition and evaluate the roles of different rules in the evolution of real networks. Our findings could shed light on the social network modeling from a new perspective.
منابع مشابه
Providing a Link Prediction Model based on Structural and Homophily Similarity in Social Networks
In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...
متن کاملGeneralized Latent Factor Models for Social Network Analysis
Homophily and stochastic equivalence are two primary features of interest in social networks. Recently, the multiplicative latent factor model (MLFM) is proposed to model social networks with directed links. Although MLFM can capture stochastic equivalence, it cannot model well homophily in networks. However, many real-world networks exhibit homophily or both homophily and stochastic equivalenc...
متن کاملPrebiotic Competition between Information Variants, With Low Error Catastrophe Risks
During competition for resources in primitive networks increased fitness of an information variant does not necessarily equate with successful elimination of its competitors. If variability is added fast to a system, speedy replacement of pre-existing and less-efficient forms of order is required as novel information variants arrive. Otherwise, the information capacity of the system fills up wi...
متن کاملHomophily and Influence: Pricing to Harness Word-of-Mouth on Social Networks
Large-scale social platforms have enabled marketers to obtain rich data on the structure of wordof-mouth (WOM) networks and the correlation of friends’ preferences (network assortativity). However, the literature is silent on how the similarity or difference of friends’ reservation prices for a product should affect the optimal price and advertising levels for that product. To answer this quest...
متن کاملA Knowledge Management Approach to Discovering Influential Users in Social Media
A key step for success of marketer is to discover influential users who diffuse information and their followers have interest to this information and increase to diffuse information on social media. They can reduce the cost of advertising, increase sales and maximize diffusion of information. A key problem is how to precisely identify the most influential users on social networks. In this pape...
متن کامل